Two Schiff bases (H2L), derived from o-vanillin and nicotinic hydrazide, and its complexes with some lanthanides (Y, Ce, Yb, Pr, Gd and Tb) have been synthesized. These compounds have been characterized by means of elemental analysis, UV–Vis spectroscopy, FTIR spectroscopy, 1H and 13C NMR (for H2L), molar conductance and room temperature magnetic measurements. The compounds are found isostructural and are formulated as {[(Z)(η2-OOCH3)Ln](-L)2[Ln(η2-OOCH3)(Z)]} (Z = H2O for Ln = Y, Ce, Pr, Gd or Tb and Z = OS(CH3)2 for Ln =Yb). The two ligand molecules act in their dideprotonated forms through one azomethine nitrogen atom, one phenoxo oxygen atom and one iminolate oxygen atom. The two Ln (III) ions are bridged by two phenoxo oxygen atoms, forming a dinuclear complex. Single crystal X-ray analysis of the ytterbium complex has revealed the nature of the structure {[(OS(CH3)2)(η2-OOCH3)Yb](-L)2[Yb(η2-OOCH3)(OS(CH3)2)]} (3). The complex crystallizes in the monoclinic space group C2/c with cell parameters of a = 13.0391(6) Å, b = 15.1199(6) Å, c = 20.7239(7) Å, β = 105.671(2)°, V = 3933.8(3) Å3, Z = 4, R1 = 0.025, wR2 = 0.65. The ytterbium atoms are eight-coordinated, and their coordination polyhedron are best described as a square antiprismatic geometry. The aromatic rings of the ligand molecule are twisted with dihedral angle of 29.23 (1)° between their mean planes.
Published in | Science Journal of Chemistry (Volume 11, Issue 2) |
DOI | 10.11648/j.sjc.20231102.13 |
Page(s) | 56-63 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2023. Published by Science Publishing Group |
Hydrazide, Lanthanide, FTIR, NMR, Crystal, X-ray Diffraction
[1] | Anastasiadis, N. C., Mylonas-Margaritis, I., Psycharis, V., Raptopoulou, C. P., Kalofolias, D. A., Milios, C. J., Klouras, N. & Perlepes, S. P. (2015). Dinuclear, tetrakis (acetato)-bridged lanthanide (III) complexes from the use of 2-acetylpyridine hydrazone. Inorganic Chemistry Communications, 51, 99–102. https://doi.org/10.1016/j.inoche.2014.11.004 |
[2] | Madanhire, T., Davids, H., Pereira, M. C., Hosten, E. C. & Abrahams, A. (2020). Synthesis, characterisation and anticancer activity screening of lanthanide (III) acetate complexes with benzohydrazone and nicotinohydrazone ligands. Polyhedron, 184, 114560. https://doi.org/10.1016/j.poly.2020.114560 |
[3] | Soliman, S. M. & El-Faham, A. (2018). Low temperature X-ray structure analyses combined with NBO studies of a new heteroleptic octa-coordinated Holmium (III) complex with N,N,N-tridentate hydrazono-phthalazine-type ligand. Journal of Molecular Structure, 1157, 222–229. https://doi.org/10.1016/j.molstruc.2017.12.016 |
[4] | Li, H.-G., Yang, Z.-Y., Wang, B.-D. & Wu, J.-C. (2010). Synthesis, crystal structure, antioxidation and DNA-binding properties of the Ln complexes with 1-phenyl-3-methyl-5-hydroxypyrazole-4-carbaldhyde-(benzoyl)hydrazone. Journal of Organometallic Chemistry, 695 (3), 415–422. https://doi.org/10.1016/j.jorganchem.2009.10.032 |
[5] | Biswas, S., Das, S., Rogez, G. & Chandrasekhar, V. (2016). Hydrazone-Ligand-Based Homodinuclear Lanthanide Complexes: Synthesis, Structure, and Magnetism. European Journal of Inorganic Chemistry, 2016 (20), 3322–3329. https://doi.org/10.1002/ejic.201600335 |
[6] | Kaczmarek, M. T., Zabiszak, M., Nowak, M. & Jastrzab, R. (2018). Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coordination Chemistry Reviews, 370, 42–54. https://doi.org/10.1016/j.ccr.2018.05.012 |
[7] | Crutchley, R. J. (2014). Applications of lanthanide compounds to materials science and biology. Coordination Chemistry Reviews, 273–274, 1. https://doi.org/10.1016/j.ccr.2014.04.011 |
[8] | Singh, K., Srivastava, P. & Patra, A. K. (2016). Binding interactions with biological targets and DNA photocleavage activity of Pr (III) and Nd (III) complexes of dipyridoquinoxaline. Inorganica Chimica Acta, 451, 73–81. https://doi.org/10.1016/j.ica.2016.07.003 |
[9] | Das Mukherjee, D., Kumar, N. M., Tantak, M. P., Das, A., Ganguli, A., Datta, S., Kumar, D. & Chakrabarti, G. (2016). Development of Novel Bis(indolyl)-hydrazide–Hydrazone Derivatives as Potent Microtubule-Targeting Cytotoxic Agents against A549 Lung Cancer Cells. Biochemistry, 55 (21), 3020–3035. https://doi.org/10.1021/acs.biochem.5b01127 |
[10] | Zabiszak, M., Nowak, M., Gabryel, M., Ogawa, K., Kaczmarek, M. T., Hnatejko, Z. & Jastrzab, R. (2019). New Coordination compounds of citric acid and polyamines with lanthanides ions – potential application in monitoring the treatment of cancer diseases. Biochemistry, 198, 110715. https://doi.org/10.1016/j.jinorgbio.2019.110715 |
[11] | Ashma, A., Yahya, S., Subramani, A., Tamilarasan, R., Sasikumar, G., Ali, S. J. A., Al-Lohedan, H. A. & Karnan, M. (2022). Synthesis of new nicotinic acid hydrazide metal complexes: Potential anti-cancer drug, supramolecular architecture, antibacterial studies and catalytic properties. Journal of Molecular Structure, 1250, 131860. https://doi.org/10.1016/j.molstruc.2021.131860 |
[12] | Aruna, V. A. J. & Alexander, V. (1996). Synthesis of lanthanide (III) complexes of a 20-membered hexaaza macrocycle. J. Chem. Soc., Dalton Trans., (9), 1867–1873. https://doi.org/10.1039/DT9960001867 |
[13] | Ge, Y., Huang, Y., Wang, G., Li, Y. & Yao, J. (2020). A series of mononuclear lanthanide complexes constructed by Schiff base and β-diketonate ligands: synthesis, structures, magnetic and fluorescent properties. Polyhedron, 187, 114651. https://doi.org/10.1016/j.poly.2020.114651 |
[14] | Yang, H., Liu, S.-S., Meng, Y.-S., Zhang, Y.-Q., Pu, L. & Yu, X.-Q. (2019). Magnetic properties and theoretical calculations of mononuclear lanthanide complexes with a Schiff base coordinated to Ln (III) ion in a monodentate coordination mode. Inorganica Chimica Acta, 494, 8–12. https://doi.org/10.1016/j.ica.2019.04.051 |
[15] | Ndiaye-Gueye, M., Dieng, M., Thiam, E. I., Lo, D., Barry, A. H., Gye, M. & Retailleau, P. (2017). Lanthanide (III) Complexes with Tridentate Schiff Base Ligand, Antioxidant Activity and X-Ray Crystal Structures of the Nd (III) and Sm (III) Complexes. South African Journal of Chemistry, 70, 8–15. http://dx.doi.org/10.17159/0379-4350/2017/v70a2 |
[16] | Lekha, L., Raja, K. K., Rajagopal, G. & Easwaramoorthy, D. (2014). Schiff base complexes of rare earth metal ions: Synthesis, characterization and catalytic activity for the oxidation of aniline and substituted anilines. Journal of Organometallic Chemistry, 753, 72–80. https://doi.org/10.1016/j.jorganchem.2013.12.014 |
[17] | Yuan, B., Wang, F., Tao, J., Li, M. & Yang, X. (2019). Self-assembly of one visible and NIR luminescent Sm (III) coordination polymer with flexible Schiff base ligand. Inorganica Chimica Acta, 490, 24–28. https://doi.org/10.1016/j.ica.2019.02.019 |
[18] | Yuan, B., Tao, J., Wang, F., Zhu, C., Li, M. & Yang, X. (2020). Construction of NIR luminescent nanoscale lanthanide complexes with new flexible Schiff base ligands. Journal of Rare Earths, 38 (2), 143–147. https://doi.org/10.1016/j.jre.2019.02.014 |
[19] | Dang, S., Yu, J.-B., Wang, X.-F., Guo, Z.-Y., Sun, L.-N., Deng, R.-P., Feng, J., Fan, W.-Q. & Zhang, H.-J. (2010). A study on the NIR-luminescence emitted from ternary lanthanide [Er (III), Nd (III) and Yb (III)] complexes containing fluorinated-ligand and 4,5-diazafluoren-9-one. Journal of Photochemistry and Photobiology A: Chemistry, 214 (2), 152–160. https://doi.org/10.1016/j.jphotochem.2010.06.019 |
[20] | Chandrasekhar, V., Bag, P., Speldrich, M., van Leusen, J. & Kögerler, P. (2013). Synthesis, Structure, and Magnetic Properties of a New Family of Tetra-nuclear {Mn2IIILn2}(Ln = Dy, Gd, Tb, Ho) Clusters With an Arch-Type Topology: Single-Molecule Magnetism Behavior in the Dysprosium and Terbium Analogues. Inorganic Chemistry, 52 (9), 5035–5044. https://doi.org/10.1021/ic302742u |
[21] | Shibasaki, M. & Yoshikawa, N. (2002). Lanthanide Complexes in Multifunctional Asymmetric Catalysis. Chemical Reviews, 102 (6), 2187–2210. https://doi.org/10.1021/cr010297z |
[22] | Kitamura, Y., Azuma, Y., Katsuda, Y. & Ihara, T. (2020). Catalytic formation of luminescent lanthanide complexes using an entropy-driven DNA circuit. Chem. Commun., 56 (27), 3863–3866. https://doi.org/10.1039/D0CC00602E |
[23] | Baykal, U. & Akkaya, E. U. (1998). Synthesis and phosphodiester transesterification activity of the La3+-complex of a novel functionalized octadentate ligand. Tetrahedron Letters, 39 (32), 5861–5864. https://doi.org/10.1016/S0040-4039(98)01166-6 |
[24] | Zeng, R., Sheng, H., Zhang, Y., Feng, Y., Chen, Z., Wang, J., Chen, M., Zhu, M. & Guo, Q. (2014). Heterobimetallic Dinuclear Lanthanide Alkoxide Complexes as Acid–Base Difunctional Catalysts for Transesterification. The Journal of Organic Chemistry, 79 (19), 9246–9252. https://doi.org/10.1021/jo5016536 |
[25] | Vaughn, B. A., Koller, A. J., Chen, Z., Ahn, S. H., Loveless, C. S., Cingoranelli, S. J., Yang, Y., Cirri, A., Johnson, C. J., Lapi, S. E., Chapman, K. W. & Boros, E. (2021). Homologous Structural, Chemical, and Biological Behavior of Sc and Lu Complexes of the Picaga Bifunctional Chelator: Toward Development of Matched Theranostic Pairs for Radiopharmaceutical Applications. Bioconjugate Chemistry, 32 (7), 1232–1241. https://doi.org/10.1021/acs.bioconjchem.0c00574 |
[26] | Woods, M., Kovacs, Z. & Sherry, A. D. (2002). Targeted Complexes of Lanthanide (III) Ions as Therapeutic and Diagnostic Pharmaceuticals. Journal of Supramolecular Chemistry, 2 (1), 1–15. https://doi.org/10.1016/S1472-7862(02)00072-2 |
[27] | Bhiri, N. M., Dammak, M., Carvajal, J. J., Aguiló, M., Díaz, F. & Pujol, M. C. (2022). Stoichiometric dependence and laser heating effect on the luminescence thermometric performance of Er3+, Yb3+: YuGdwVO4 microparticles in the non-saturation regime. Materials Research Bulletin, 151, 111801. https://doi.org/10.1016/j.materresbull.2022.111801 |
[28] | Tamboura, F. B., Haba, P. M., Gaye, M., Sall, A. S., Barry, A. H. & Jouini, T. (2004). Structural studies of bis-(2,6-diacetylpyridine-bis-(phenylhydrazone)) and X-ray structure of its Y (III), Pr (III), Sm (III) and Er (III) complex. Polyhedron, 23 (7), 1191–1197. https://doi.org/10.1016/j.poly.2004.01.014 |
[29] | Tamboura, F. B., Diop, M., Gaye, M., Sall, A. S., Barry, A. H. & Jouini, T. (2003). X-ray structure and spectroscopic properties of some lanthanides (III) complexes derived from 2,6-diacetylpyridine-bis(benzoylhydrazone). Inorganic Chemistry Communications, 6 (8), 1004–1010. https://doi.org/10.1016/S1387-7003(03)00167-9 |
[30] | Tamboura, F. B., Diouf, O., Barry, A. H., Gaye, M. & Sall, A. S. (2012). Dinuclear lanthanide (III) complexes with large-bite Schiff bases derived from 2,6-diformyl-4-chlorophenol and hydrazides: Synthesis, structural characterization, and spectroscopic studies. Polyhedron, 43 (1), 97–103. https://doi.org/10.1016/j.poly.2012.06.025 |
[31] | Sheldrick, G. M. (2015). SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, 71 (1), 3–8. https://doi.org/10.1107/S2053273314026370 |
[32] | Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71 (1), 3–8. https://doi.org/10.1107/S2053229614024218 |
[33] | Farrugia, L. J. (2012). WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45 (4), 849–854. https://doi.org/10.1107/S0021889812029111 |
[34] | Haba, P. M., Tamboura, F. B., Diouf, O., Gaye, M., Sall, A. S., Baldé, C. A. & Slebodnick, C. (2016). Preparation, spectroscopic studies and x-ray structure of homobinuclear lanthanide (III) complexes derived from 2,6-diformyl-4-chlorophénol-bis-(2’-hydroxy-benzoylhydrazone). Bulletin of the Chemical Society of Ethiopia, 20 (1), 45–54. https://doi.org/10.4314/bcse.v20i1.21142 |
[35] | Bakale, R. P., Naik, G. N., Machakanur, S. S., Mangannavar, C. V., Muchchandi, I. S. & Gudasi, K. B. (2018). Structural characterization and antimicrobial activities of transition metal complexes of a hydrazone ligand. Journal of Molecular Structure, 1154, 92–99. https://doi.org/10.1016/j.molstruc.2017.10.035 |
[36] | Singh, Y. P., Patel, R. N., Singh, Y., Butcher, R. J., Vishakarma, P. K. & Singh, R. K. B. (2017). Structure and antioxidant superoxide dismutase activity of copper (II) hydrazone complexes. Polyhedron, 122, 1–15. https://doi.org/10.1016/j.poly.2016.11.013 |
[37] | Salah, B. A., Kandil, A. T. & El-Nasser, M. G. A. (2019). Synthesis, molecular docking, and computational studies of novel hydrazone complexes. Journal of Radiation Research and Applied Sciences, 12 (1), 413–422. https://doi.org/10.1080/16878507.2019.1683273 |
[38] | Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coordination Chemistry Reviews, 7 (1), 81–122. https://doi.org/10.1016/S0010-8545(00)80009-0 |
[39] | Van Vleck, J. H. & Frank, A. (1929). The Effect of Second Order Zeeman Terms on Magnetic Susceptibilities in the Rare Earth and Iron Groups. Physical Review, 34 (11), 1494–1496. https://doi.org/10.1103/PhysRev.34.1494 |
[40] | Wu, H., Pan, G., Bai, Y., Wang, H., Kong, J., Shi, F., Zhang, Y. & Wang, X. (2015). Synthesis, structure, antioxidation, and DNA-binding studies of a binuclear ytterbium (III) complex with bis(N-salicylidene)-3-oxapentane-1,5-diamine. Research on Chemical Intermediates, 41 (6), 3375–3388. https://doi.org/10.1007/s11164-013-1440-5 |
[41] | Chen, W.-B., Zhong, L., Zhong, Y.-J., Zhang, Y.-Q., Gao, S. & Dong, W. (2020). Understanding the near-infrared fluorescence and field-induced single-molecule-magnetic properties of dinuclear and one-dimensional-chain ytterbium complexes based on 2-hydroxy-3-methoxybenzoic acid. Inorganic Chemistry Frontiers, 7 (17), 3136–3145. https://doi.org/10.1039/D0QI00628A |
[42] | Maria, L., Sousa, V. R., Santos, I. C., Mora, E. & Marçalo, J. (2016). Synthesis and structural characterization of polynuclear divalent ytterbium complexes supported by a bis(phenolate) cyclam ligand. Polyhedron, 119, 277–285. https://doi.org/10.1016/j.poly.2016.09.008 |
[43] | Anwar, M. U., Dawe, L. N., Tandon, S. S., Bunge, S. D. & Thompson, L. K. (2013). Polynuclear lanthanide (Ln) complexes of a tri-functional hydrazone ligand – mononuclear (Dy), dinuclear (Yb, Tm), tetranuclear (Gd), and hexanuclear (Gd, Dy, Tb) examples. Dalton Trans., 42 (21), 7781–7794. https://doi.org/10.1039/C3DT32732A |
[44] | He, H., Sykes, A. G., May, P. S. & He, G. (2009). Structure and photophysics of near-infrared emissive ytterbium (III) monoporphyrinate acetate complexes having neutral bidentate ligands. Dalton Trans., (36), 7454–7461. https://doi.org/10.1039/B909243A |
APA Style
Fatou Barr, Papa Samba Camara, Amadou Guèye, Sofia Zazouli, Nathalie Gruber, et al. (2023). Spectroscopic Studies and X-ray Structural of Dinuclear Lanthanide (III) Complexes Derived from N'-(2-hydroxy-3-methoxybenzylidene) Nicotinohydrazide. Science Journal of Chemistry, 11(2), 56-63. https://doi.org/10.11648/j.sjc.20231102.13
ACS Style
Fatou Barr; Papa Samba Camara; Amadou Guèye; Sofia Zazouli; Nathalie Gruber, et al. Spectroscopic Studies and X-ray Structural of Dinuclear Lanthanide (III) Complexes Derived from N'-(2-hydroxy-3-methoxybenzylidene) Nicotinohydrazide. Sci. J. Chem. 2023, 11(2), 56-63. doi: 10.11648/j.sjc.20231102.13
AMA Style
Fatou Barr, Papa Samba Camara, Amadou Guèye, Sofia Zazouli, Nathalie Gruber, et al. Spectroscopic Studies and X-ray Structural of Dinuclear Lanthanide (III) Complexes Derived from N'-(2-hydroxy-3-methoxybenzylidene) Nicotinohydrazide. Sci J Chem. 2023;11(2):56-63. doi: 10.11648/j.sjc.20231102.13
@article{10.11648/j.sjc.20231102.13, author = {Fatou Barr and Papa Samba Camara and Amadou Guèye and Sofia Zazouli and Nathalie Gruber and Farba Bouyagui Tamboura and Moussa Dieng and Mohamed Gaye}, title = {Spectroscopic Studies and X-ray Structural of Dinuclear Lanthanide (III) Complexes Derived from N'-(2-hydroxy-3-methoxybenzylidene) Nicotinohydrazide}, journal = {Science Journal of Chemistry}, volume = {11}, number = {2}, pages = {56-63}, doi = {10.11648/j.sjc.20231102.13}, url = {https://doi.org/10.11648/j.sjc.20231102.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20231102.13}, abstract = {Two Schiff bases (H2L), derived from o-vanillin and nicotinic hydrazide, and its complexes with some lanthanides (Y, Ce, Yb, Pr, Gd and Tb) have been synthesized. These compounds have been characterized by means of elemental analysis, UV–Vis spectroscopy, FTIR spectroscopy, 1H and 13C NMR (for H2L), molar conductance and room temperature magnetic measurements. The compounds are found isostructural and are formulated as {[(Z)(η2-OOCH3)Ln](-L)2[Ln(η2-OOCH3)(Z)]} (Z = H2O for Ln = Y, Ce, Pr, Gd or Tb and Z = OS(CH3)2 for Ln =Yb). The two ligand molecules act in their dideprotonated forms through one azomethine nitrogen atom, one phenoxo oxygen atom and one iminolate oxygen atom. The two Ln (III) ions are bridged by two phenoxo oxygen atoms, forming a dinuclear complex. Single crystal X-ray analysis of the ytterbium complex has revealed the nature of the structure {[(OS(CH3)2)(η2-OOCH3)Yb](-L)2[Yb(η2-OOCH3)(OS(CH3)2)]} (3). The complex crystallizes in the monoclinic space group C2/c with cell parameters of a = 13.0391(6) Å, b = 15.1199(6) Å, c = 20.7239(7) Å, β = 105.671(2)°, V = 3933.8(3) Å3, Z = 4, R1 = 0.025, wR2 = 0.65. The ytterbium atoms are eight-coordinated, and their coordination polyhedron are best described as a square antiprismatic geometry. The aromatic rings of the ligand molecule are twisted with dihedral angle of 29.23 (1)° between their mean planes.}, year = {2023} }
TY - JOUR T1 - Spectroscopic Studies and X-ray Structural of Dinuclear Lanthanide (III) Complexes Derived from N'-(2-hydroxy-3-methoxybenzylidene) Nicotinohydrazide AU - Fatou Barr AU - Papa Samba Camara AU - Amadou Guèye AU - Sofia Zazouli AU - Nathalie Gruber AU - Farba Bouyagui Tamboura AU - Moussa Dieng AU - Mohamed Gaye Y1 - 2023/04/27 PY - 2023 N1 - https://doi.org/10.11648/j.sjc.20231102.13 DO - 10.11648/j.sjc.20231102.13 T2 - Science Journal of Chemistry JF - Science Journal of Chemistry JO - Science Journal of Chemistry SP - 56 EP - 63 PB - Science Publishing Group SN - 2330-099X UR - https://doi.org/10.11648/j.sjc.20231102.13 AB - Two Schiff bases (H2L), derived from o-vanillin and nicotinic hydrazide, and its complexes with some lanthanides (Y, Ce, Yb, Pr, Gd and Tb) have been synthesized. These compounds have been characterized by means of elemental analysis, UV–Vis spectroscopy, FTIR spectroscopy, 1H and 13C NMR (for H2L), molar conductance and room temperature magnetic measurements. The compounds are found isostructural and are formulated as {[(Z)(η2-OOCH3)Ln](-L)2[Ln(η2-OOCH3)(Z)]} (Z = H2O for Ln = Y, Ce, Pr, Gd or Tb and Z = OS(CH3)2 for Ln =Yb). The two ligand molecules act in their dideprotonated forms through one azomethine nitrogen atom, one phenoxo oxygen atom and one iminolate oxygen atom. The two Ln (III) ions are bridged by two phenoxo oxygen atoms, forming a dinuclear complex. Single crystal X-ray analysis of the ytterbium complex has revealed the nature of the structure {[(OS(CH3)2)(η2-OOCH3)Yb](-L)2[Yb(η2-OOCH3)(OS(CH3)2)]} (3). The complex crystallizes in the monoclinic space group C2/c with cell parameters of a = 13.0391(6) Å, b = 15.1199(6) Å, c = 20.7239(7) Å, β = 105.671(2)°, V = 3933.8(3) Å3, Z = 4, R1 = 0.025, wR2 = 0.65. The ytterbium atoms are eight-coordinated, and their coordination polyhedron are best described as a square antiprismatic geometry. The aromatic rings of the ligand molecule are twisted with dihedral angle of 29.23 (1)° between their mean planes. VL - 11 IS - 2 ER -